
DevOps on cloud TCS 651 

 

 

Unit-01 

An introduction to Software Engineering, SDLC, Agile Framework, An introduction to DevOps, 

Gain insights of the DevOps environment, DevOps Vs Agile, DevOps Ecosystem. 

 

 

Software Engineering 

 Software engineering is an engineering approach for software development.  

 We can alternatively view it as a systematic collection of past experience. The experience 

is arranged in the form of methodologies and guidelines.  

 A small program can be written without using software engineering principles. 

 But if one wants to develop a large software product, then software engineering 

principles are indispensable to achieve a good quality software cost effectively. 

 Without using software engineering principles it would be difficult to develop large 

programs. 

 In industry it is usually needed to develop large programs to accommodate multiple 

functions. 

 A problem with developing such large commercial programs is that the complexity and 

difficulty levels of the programs increase exponentially with their sizes. 

 For example, a program of size 1,000 lines of code has some complexity. But a program 

with 10,000 LOC is not just 10 times more difficult to develop, 

 but may as well turn out to be 100 times more difficult unless software engineering 

principles are used. 



 

 

Program Vs Software Product 

 Programs are developed by individuals for their personal use. They are therefore, small 

in size and have limited functionality but software products are extremely large.  

 In case of a program, the programmer himself is the sole user but on the other hand, in 

case of a software product, most users are not involved with the development.  

 In case of a program, a single developer is involved but in case of a software product, a 

large number of developers are involved. For a program, the user interface may not be 

very important, because the programmer is the sole user.  

 On the other hand, for a software product, user interface must be carefully designed and 

implemented because developers of that product and users of that product are totally 

different.  

 

 

 

 

 



Life Cycle Model 

 A software life cycle model (also called process model) is a descriptive and diagrammatic 

representation of the software life cycle. 

 A life cycle model represents all the activities required to make a software product transit 

through its life cycle phases.  

 It also captures the order in which these activities are to be undertaken.  

 In other words, a life cycle model maps the different activities performed on a software 

product from its inception to retirement.  

 

The need for a software life cycle model 

 The development team must identify a suitable life cycle model for the particular project 

and then adhere to it.  

 Without using of a particular life cycle model the development of a software product 

would not be in a systematic and disciplined manner. 

  A software life cycle model defines entry and exit criteria for every phase. A phase can 

start only if its phase-entry criteria have been satisfied.  

 So without software life cycle model the entry and exit criteria for a phase cannot be 

recognized.  

 Without software life cycle models (such as classical waterfall model, iterative waterfall 

model, prototyping model, evolutionary model, spiral model etc.) it becomes difficult for 

software project managers to monitor the progress of the project.  

 

Different life cycle models 

Many life cycle models have been proposed so far. Each of them has some advantages as 

well as some disadvantages. A few important and commonly used life cycle models are as 

follows:  

 Classical Waterfall Model 
 Iterative Waterfall Model 
 Prototyping Model  
 Evolutionary Model  
 Spiral Model  

 



Classical Waterfall Model 

 The classical waterfall model is intuitively the most obvious way to develop software. 

Though the classical waterfall model is elegant and intuitively obvious, it is not a practical 

model in the sense that it cannot be used in actual software development projects.  

 Thus, this model can be considered to be a theoretical way of developing software.  

 Classical waterfall model divides the life cycle into the following phases:  

 Feasibility Study  
 Requirements Analysis and Specification  
 Design 
 Coding and Unit Testing  
 Integration and System Testing  
 Maintenance  

 
 

 
 

Short comings of Classical Waterfall Model 

 The classical waterfall model is an idealistic one since it assumes that no development 

error is ever committed by the engineers during any of the life cycle phases.  

 However, in practical development environments, the engineers do commit a large 

number of errors in almost every phase of the life cycle.  

 The source of the defects can be many: oversight, wrong assumptions, use of 

inappropriate technology, communication gap among the project engineers, etc.  



 These defects usually get detected much later in the life cycle. For example, a design 

defect might go unnoticed till we reach the coding or testing phase. 

  Once a defect is detected, the engineers need to go back to the phase where the defect 

had occurred and redo some of the work done during that phase and the subsequent 

phases to correct the defect and its effect on the later phases.  

 Therefore, in any practical software development work, it is not possible to strictly 

follow the classical waterfall model.    

 

 

 



 

 

 



 

 

 

 



 

 

What is DevOps and why it is gaining popularity? 

 DevOps (Development and Operations) is a culture that promotes collaboration between 

the development and operations team to increase the organization’s ability to deliver 

products or applications in an automated and repeatable way. Today an increasing 

number of organizations are implementing DevOps, fueled by reports of the benefits of 

DevOps which includes less time consumption to deliver things to market, reduced costs, 

increased security, and higher quality of products. So, it can be defined as a type of agile 

relationship between development and IT operations with a basic goal to improve the 

relationship between these two units. 

Why DevOps is Gaining Popularity? 

 

Minimal Time Accelerated Results 

With DevOps, where operations and development teams are integrated, applications 

can be developed and deployed much more rapidly. As per business today, the success 

factor hinges largely on an organization’s ability to deliver outcomes faster than the 

competition. Since changesets are smaller, problems tend to be less complex. 
 

Collaboration Reduces Differences 



DevOps make sure that the difference between operations and developments is 

eliminated by building a bridge to make them work together in a better way. The 

software development culture then continuously focuses on combined achievement 

rather than individual goals. The development environment becomes progressively 

more seamless as all team members work toward shared goals as it’s no longer a matter 

of tossing the application code over the wall and hoping for the best. 

 

Reduced Differences Increase Efficiency 

Improved Collaboration increases efficiency. DevOps focuses on uniting the efforts of 

both of these departments as well as other departments such as testing, product 

management, and others in the team. Fast software delivery is crucial in today’s digital 

age and a DevOps culture is a crucial aspect of this process. 

 

Reduced Errors 

DevOps reduces the chances of human errors during development and operations 

process. It lowers the application failure rate with multiple deployments in the process 

in a defined timeline by deploying frequent iterations. The shorter development cycles 

associated with a strong DevOps approach promotes more frequent code releases. 

 

Stable operating environment 

For any business or software platform, stability is the key. DevOps is established to bring 

stability with reliability. Organizations with DevOps get their deployment 30 times faster 

than their rivals with 50% lesser chances of failure. 

 

 



 

 

 

 

Dark Launching Technique 

 

 

 

 



 

 

 

 

 



 

 

 

 

 

 

 



Different phases in DevOps methodology. 

 

The various phases of the DevOps lifecycle are as follows: 

 Plan – In this stage, all the requirements of the project and everything regarding the 
project like time for each stage, cost, etc are discussed. This will help everyone in the team 
to get a brief idea about the project. 

 Code – The code is written over here according to the client’s requirements. Here codes 
are written in the form of small codes called units. 

 Build – Building of the units is done in this step. 
 Test – Testing is done in this stage and if there are mistakes found it is returned for re-

build. 
 Integrate – All the units of the codes are integrated into this step. 
 Deploy – codeDevOpsNow is deployed in this step on the client’s environment. 
 Operate – Operations are performed on the code if required. 
 Monitor – Monitoring of the application is done over here in the client’s environment. 

 

 

 



Unit-02 

Version Control with Git, Install GIT and work with remote repositories, GIT workflows, Branching 

and Merging in Git. Understand the importance of Continuous Integration, Introduction to Jenkins, 

Jenkins management. Build and automation of Test using Jenkins and Maven. 

 

 

What is Git? 

 Git is a Distributed Version Control system (DVCS). It can track changes to a file 
and allows you to revert back to any particular change. 

 Its distributed architecture provides many advantages over other Version Control 
Systems (VCS) like SVN one major advantage is that it does not rely on a central 
server to store all the versions of a project’s files. Instead, every developer “clones” 
a copy of a repository I have shown in the diagram below with “Local repository” 
and has the full history of the project on his hard drive so that when there is a 
server outage, all you need for recovery is one of your teammate’s local Git 
repository. 

 There is a central cloud repository as well where developers can commit changes 
and share it with other teammates as you can see in the diagram where all 
collaborators are commiting changes “Remote repository”. 

 

 



 

Some basic Git commands: 

 

 

 

 

What is Version control? 
It is a system that records changes to a file or set of files over time so that you can recall specific 

versions later. Version control systems consist of a central shared repository where teammates 

can commit changes to a file or set of file. Then you can mention the uses of version control. 

Version control allows you to: 

 Revert files back to a previous state. 
 Revert the entire project back to a previous state. 
 Compare changes over time. 
 See who last modified something that might be causing a problem. 
 Who introduced an issue and when. 



What are the benefits of using version control? 

1. With Version Control System (VCS), all the team members are allowed to work 
freely on any file at any time. VCS will later allow you to merge all the changes into 
a common version. 

2. All the past versions and variants are neatly packed up inside the VCS. When you 
need it, you can request any version at any time and you’ll have a snapshot of the 
complete project right at hand. 

3. Every time you save a new version of your project, your VCS requires you to 
provide a short description of what was changed. Additionally, you can see what 
exactly was changed in the file’s content. This allows you to know who has made 
what change in the project. 

4. A distributed VCS like Git allows all the team members to have complete history 
of the project so if there is a breakdown in the central server you can use any of 
your teammate’s local Git repository. 

 

What is Git rebase and how can it be used to resolve conflicts in a feature branch 

before merge? 

 

 Git rebase is a command which will merge another branch into the branch where you are 

currently working, and move all of the local commits that are ahead of the rebased branch 

to the top of the history on that branch. 

 Now once you have defined Git rebase time for an example to show how it can be used 

to resolve conflicts in a feature branch before merge, if a feature branch was created from 

master, and since then the master branch has received new commits, Git rebase can be 

used to move the feature branch to the tip of master. 

 The command effectively will replay the changes made in the feature branch at the tip of 

master, allowing conflicts to be resolved in the process. When done with care, this will 

allow the feature branch to be merged into master with relative ease and sometimes as 

a simple fast-forward operation. 



Explain the difference between a centralized and distributed version control 

system (VCS).? 

 

Git Lab 

Install the git in windows follow the link https://gitforwindows.org/ 

############################CREATING REPOSITORY########################### 

1. Create a folder in any drive name "yourname_git_demo" 

2. Navigate into the created folder and right_click  

3. Choose the option "Git Bash Here" 

4. In the Git Bash terminal type  "git init", it will initialize empty git repository 

(Stay in the same folder) 

https://gitforwindows.org/


 

 



 

 



 

 

 

#linking remote repository 



git remote add origin "copy and paste the link from your git-hub repository, if you have already 

created (Otherwise  create a new repository using your git  account)"  

git pull origin master 

 

 

 



 

 

Create some text file and write anything into it 

 



 

 

 

#  Navigate into the created folder and right click->new->Text document 

#  Name the file as text1 and write something into the file and save it. 

 git status 

 git add textfile1.txt 

 git status 



 git commit -m "first commit" 

## changes finally committed in local repository 

## create more files in the same folder as text2.txt, text3.txt and repeate and understand the 

above procedure. 

## Explore what is tracked file, untracked file and modified file. 

## git add -A // is used to add all files at once. 

git status 

git commit -a -m "adding all files together" 

 

 

## to check how git stores all the commits, use git log 



 

 

 

 

 

#########PARALLEL DEVELOPMENT######### 

Branching 

 



 

Create some text file in the same folder and write something into it 

 

 



 

 

 



 

 

 

Rebasing 



 

Create some text files as textfile3.txt and textfile4.txt and write something into it 

 

 



 

 



 

 



 

 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 

 

 

 

 

 

 

What is continuous integration? 

Continuous integration is a software development process where developers integrate the new 

code they've written more frequently throughout the development cycle, adding it to the code base 

at least once a day. Automated testing is done against each iteration of the build to identify 

integration issues earlier, when they are easier to fix , which also helps avoid problems at the final 

merge for the release. Overall, continuous integration helps streamline the build process, resulting 

in higher-quality software and more predictable delivery schedules. 
 

Continuous integration and DevOps 

In the DevOps framework, continuous integration sits at the beginning of the software 
development process, where you check in your code at least once a day to keep your 
local copies from drifting too far away from the main branch of the code build. This helps 
you avoid disastrous merge conflicts that could "break" the build and take the team hours 
or days to resolve. 

https://www.ibm.com/in-en/topics/devops


Continuous integration serves as a prerequisite for the testing, deployment and release 
stages of continuous delivery. The entire development team will know within minutes of 
check-in whether you've created bad code, as the continuous integration service 
automatically builds and tests your code changes for any errors. 

 

Continuous integration (CI) vs. continuous delivery (CD) 

vs. continuous deployment 

 

Continuous delivery and continuous deployment follow continuous integration in the DevOps 

cycle.  

Continuous delivery (CD) picks up where continuous integration ends, automating the delivery 

of applications to selected infrastructure environments. CD focuses on delivering any validated 

changes to the code base—updates, bug fixes, even new features—to users as quickly and safely 

as possible. It ensures the automation of pushing code changes to different environments, such 

as development, testing and production. 

In continuous deployment, the code changes to an application are released automatically into 

the production environment. This automation is driven by a series of predefined tests. Once new 

updates pass those tests, the system pushes the updates directly to the software's users. 

 

 

Benefits of continuous integration 

Commonly cited benefit of continuous integration include: 

 Early and improved error detection and metrics that let you address errors early—
sometimes within minutes of check-in 
 

 Continuous and demonstrated progress for improved feedback 
 

 Improved team collaboration; everyone on the team can change the code, integrate 
the system and quickly determine conflicts with other parts of the software 
 

 Improved system integration, which reduces surprises at the end of the software 
development lifecycle 
 

 Fewer parallel changes for merging and testing 
 

https://www.ibm.com/in-en/topics/continuous-delivery
https://www.ibm.com/in-en/topics/continuous-deployment


 Reduced number of errors during system testing 
 

 Constantly updated systems to test against 
 

Open source continuous integration tools 

Popular open source continuous integration tools include: 

 Jenkins: A widely used open source continuous integration tool, Jenkins allows 
developers to automatically build, integrate and test code as soon as they commit it 
to the source repository, making it easier for developers to catch bugs early and 
deploy software faster. The Docker plug-in is available on Jenkins. 
 

 Buildbot: Buildbot can automate all aspects of the software development cycle. As a 
job scheduling system, it queues and executes jobs, and reports results. 
 

 Go: What makes Go stand out from the crowd is the concept of pipelines, which 
makes the modeling of complex build workflows easy. 
 

 Travis CI: One of the oldest and most-trusted hosted solutions, it is also available in 
an on-premises version for the enterprise. 
 

 GitLab CI: An integral part of the open source Rails project, GitLab CI is a free 
hosted service that provides detailed git repository management with features like 
access control, issue tracking, code reviews and more. 

 

 

Explain some common practices of CI/CD. 

 

Continuous Integration (CI) and Continuous Deployment/Delivery (CD) are software development 

practices that aim to automate and improve the software development process. Some common 

CI/CD practices include: 

1. Automated building and testing of code changes: Every code change is 
automatically built and tested to ensure that it does not break the existing 
functionality. 

2. Code reviews and collaboration: Teams review code changes and provide 
feedback before they are merged into the main codebase. 

3. Automated deployment: The process of deploying code changes to a 
production environment is automated and can be triggered by a successful build 
and test. 



4. Infrastructure as Code (IaC): The infrastructure that supports the application is 
managed as code and versioned, allowing for easier and more consistent 
deployment. 

5. Continuous monitoring and logging: The application is continuously monitored 
for performance and errors, and logs are automatically collected and analyzed. 

6. Rollback capabilities: The ability to quickly and easily roll back to a previous 
version of the application in case of failure. 

7. Security scans: Security scans are performed on the code and infrastructure to 
identify vulnerabilities and security risks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

The leading open source automation server, Jenkins provides hundreds of plugins to 

support building, deploying and automating any project. Jenkins offers a simple way to 

set up a continuous integration and continuous delivery environment for almost any 

combination of languages and source code repositories. While Jenkins doesn’t eliminate 

the need to create scripts for individual steps, it does give you a faster and more robust 

way to integrate your entire chain of build, test, and deployment tools than you can easily 

build yourself. 

 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 

 

 

 

 



 

 

Jenkins Lab 

Download Jenkins for windows 

https://jenkins.io/download/ 

 

 

https://jenkins.io/download/


 

 



 

 



 

 



 

 



 

 



 

 

 

 

 

 



#############  Task 1################################ 

1. Create new job or item 

2. Enter an item name :Job1 

3. Choose freestyle project 

4. OK 

5. configure the Job1 

6. Choose Build section 

7. Add build step 

8. Execute shell or Execute windows batch command(on case of windows) 

9. In command field type: echo "My first task in Jenkins" 

10. Save 

11. For executing the Job1, go to Job1 and click on "Build Now" 

//Here Build the Job means executing the Job 

12. Check the Out using Build History. 

 

################ Task 2################# 

1. Create Job2 

2. Freestyle Project 

3. OK 

4. Configure 

5. Build 

6. Add build step 

7. Execute shell 

8. Command: date>> /tmp/date.txt 

9. Save 

10. Build Now 

// check the date.txt in tmp  



######### Task 3 ######## 

//Create User 

1. Manage Jenkins 

2. Manage Users 

3. Create User (create some users) 

 

 

 



################################### Task 4 #################################### 

//security in Jenkins 

1. Manage Jenkins 

2. Configure Global Security 

3. Authorization 

4. Matrix-based Security or Project-based security 

5. Add user if you required 

6. Assign the privileges 

7. Logout and log-in again with different user and explore. 

 



 

 

 

############################  Task 5 ########################################## 

//for maintaining the log file 
1. Manage Jenkins 
2. Manage Plugins 
3. Search Audit Trail plugin 
4. Choose Audit Trail and install without restart 



5. once it is installed go to Manage Jenkins 
6. Configure Systems 
7. Global properties->Audit trail 
8. Add Logger->log file 
9. Add Log Location: /tmp/jenkinsAudir.log 
10. Log file sizeMB: 25 
11. Log file count: 5 
12. Save 
// After executing any job you can check the log file /tmp/jenkinsAudit.log 
 

 



 

 

######################### Task 6 ############################################ 
//Notifications 
1. Manage Jenkins 
2. Configure Systems 
3. Extended E-mail Notifications 
4. SMTP server: smtp.gmail.com 
5. Advanced 
6. Check Use SMTP Authentication 



7. Username : abc@gmail.com 
8. Password : ******* 
9. Use SSl check 
10.SMTP port: 465 
11.Default recipient :abc@gmail.com 
12.Save 
 

 

#################### Task 7 ######################## 
// Notification for a Job 
1. Select a Job 
2. Configure 
3. Post-build Actions 
4. Editable Email Notification 
5. Project recipient list: abc@gmail.com 
6. Advanced 
7. Trigger 
8. Add a trigger(recipient list) 
9. Save 

 



 

 



 

 

 

//Scheduling the Jobs(Three ways) 

a. Timer 

b. Poll SCM 

c. Pipeline 

################################ Task 8 ################################ 
//Timer 
1. Choose any Job 
2. Configure 
3. Build Trigger 
4. Build periodically 
// little bit Learn about, what is cron job? 
5. Type in schedule: */2 * * * * 
// every two minutes it will execute the job 
6. Save 
7. Check the build history, in output console check that the job is    started by timer, not by the 
user. 
 

 



 

############################### Task 9 ######################################### 
//Poll SCM, pull the code from github and compile every two minutes or any changes occur 
then only it will compile. 
1. Create new Job (job_pollSCM_Demo) 
2. Freestyle project 
3. OK 
4. configure 
5. Source code management 
6. git 
7. Repositories 
8. Repository URL: copy and paste Git Repository URL 
// any commits happens, then only it will build 
9. Save 
10.Configure 
11. Build Trigger 
12. check Poll SCM 
13. Schedule: */2**** 
14. Save  
//perform some commit on Github and check the reflection on jenkins 
//check the workspace at /var/lib/jenkins/workspace/ 
cd /var/lib/jenkins/workspace/ 
 



 

 

Audit Trail Plugin 

Keep a log of who performed particular Jenkins operations, such as configuring jobs. 

This plugin adds an Audit Trail section in the main Jenkins configuration page. Here you can 

configure log location and settings (file size and number of rotating log files), and a URI pattern for 

requests to be logged. The default options select most actions with significant effect such as 

creating/configuring/deleting jobs and views or delete/save-forever/start a build. The log is written to 

disk as configured and recent entries can also be viewed in the Manage / System Log section. 

 

What is PMD? 

It is a static rule-set based Java source code analyser that identifies potential problems in your source 

code. There are other static analysers like FindBugs. 

What Is Static Analysis? 

Static analysis is a method of debugging that is done by automatically examining the source code 

without having to execute the program. This provides developers with an understanding of their code 

base and helps ensure that it is compliant, safe, and secure. 

What Is Static Code Analysis? 

Static code analysis and static analysis are often used interchangeably, along with source code analysis.  



 

Static code analysis addresses weaknesses in source code that might lead to vulnerabilities. Of course, 

this may also be achieved through manual source code reviews. But using automated tools is much 

more effective. 

What Is Cobertura? 

Cobertura is an open source tool that measures test coverage by instrumenting a code base and 

tracking the percentage of code that are executed as the test suite runs. It is based on jcoverage. In 

addition to identifying untested code and locating bugs, Cobertura can optimize code by flagging 

dead and unreachable code. 

Cobertura monitors tests by instrumenting the bytecode with extra statements to log which lines are 

and are not being reached as the test suite executes. It then produces a report in HTML or XML that 

shows exactly which packages, classes, methods, and individual lines of code are not being tested. 

What is a POM? 

A Project Object Model or POM is the fundamental unit of work in Maven. It is an XML file that contains 

information about the project and configuration details used by Maven to build the project. It contains 

default values for most projects. Examples for this is the build directory, which is target; the source 

directory, which is src/main/java; the test source directory, which is src/test/java; and so on. When 

executing a task or goal, Maven looks for the POM in the current directory. It reads the POM, gets the 

needed configuration information, then executes the goal. 

Some of the configuration that can be specified in the POM are the project dependencies, the plugins 

or goals that can be executed, the build profiles, and so on. Other information such as the project 

version, description, developers, mailing lists and such can also be specified. 

 

####################### Task 10 ##################################### 

Delivery Pipeline for the project 

######################################################################### 

01(Compile)->02(Code Review)->03(Unit Test Code)->04(Metric Check)->05 (Package Check)-

>06(Deploy) 

######################################################################### 

01=>Compile: Compiles the code pulled from github repository. 



02=>Code Review: Review the compiled code to check whether the code meets the organization's 

standard 

03=> Unit Test Code: Perform unit test case using  

Junit Plugin 

04=> Metric Check: Calculate the percentage of code  

accessed by testing using Cobertura Plugin 

05=>Package Check: Prepare a packaged code that  

can be deployed on any machine. 

06=>Deploy: Specify the path to deploy the application. 

 

 

Use the link: edureka-git/DevOpsClassCodes 

Maven(build automation tool) 

 

######## Task 10.01 ############# 

//compile job 

1. Create Job "DevCompile" 

2. Freestyle project. 

3. ok 

4. configure. 

5. Source Code management. 

6. git 

7. Repository URL: https://github.com/edureka-git/DevOpsClassCodes.git 

8. save 



9. jenkins->manage jenkins->Global Tool Configuration 

10.JDK 

11.Add JDK 

12.Name: myjava 

13.Install automatically 

14.version: java SE Development kit 8u152 

15.check I agree 

// you have to give oracle account details, if you don't have just create one. 

16. Maven 

17. Add Maven 

18. Name: mymaven->check Install Automatically 

19. Save 

20. configure DevCompile job 

21. Build->Add build step->invoke top-level Maven targets. 

22. maven version->mymaven 

23. Goals->compile. 

24. Save. 

25. Build Now. 

26. Check the Output console. 

 

 

############################ Task 10.02 ############################# 

//Code review 



1. create job "CodeReview". 

2. Freestyle project. 

3. ok. 

4. configure->source code management. 

5. git 

6. repository. 

7. Repository URL:https://github.com/edureka-git/DevOpsClassCodes.git 

8. Build->add build step. 

9. Invoke top-level Maven targets. 

10.Maven Version: mymaven 

11.Goals:   -P metrics pmd:pmd 

//learn about PMD plugin(program and mistake detector) 

12.Save. 

13.Build Now. 

14.Check pmd.xml under workspace/target. 

// xml report is not user friendly, to generate more user friendly trend reports follow the steps: 

15. Manage jenkins->manage plugins. 

16. Search plugin: pmd. 

17. PMD install without restart. 

18. configure CodeReview job. 

19. Post build actions. 

20. choose publish pmd analysis results. 

//provide the path of xml file 



21. PMD results: target/pmd.xml 

22. save and build now. 

23. check the analysis under PMD warnings. 

 

############################ Task 10.03 ############################# 

//Job for testing 

1. Create ne job "UnitTest" 

2. Freestyle project. 

3. ok. 

4. configure->source code management->git 

5. Repository URL: https://github.com/edureka-git/DevOpsClassCodes.git 

6. Build->Add build step->top-level maven targets. 

7. Maven version: mymaven 

8. Goals:test 

9. save->Build Now 

10.Build History->Check the console output. 

11.Check the detailed reports at workspace->target->surefire-reports(in the xml files) 

//for generating trend reports 

12. configure UnitTest job 

13. Post-build Actions->Publish JUnit test result reports 

//if the option is not present in your Post-build Action, just install JUnit Plugin. 

14. Test report XMLs: target/surefire-reports/*.xml 

// provide the path of XML files. 



15. Save->Build Now 

16. Check the Test Results. 

############################ Task 10.04 ############################# 

1. Create a new job "MetricCheck" 

2. Source code management->git 

3. Repository URL: https://github.com/edureka-git/DevOpsClassCodes.git 

4. Build->Add build step 

5. Invoke top-level maven targets. 

6. Maven Version: mymaven 

7. Goals= cobertura:cobertura -Dcobertura.report.format=xml 

8. Save 

9. Build Now 

10.check workspace->target->site->cobertura->coverage.xml 

// Cobertura tool against your compiled classes to help you determine how well the unit testing and 

integration testing efforts have been, and can then be used to identify which parts of your Java 

program are lacking test coverage. 

11. for generate trend reports 

//jenkins->manage jenkins->plugin manager->search cobertura plugin-> check cobertura plugin-

>install without restart 

12. Configure MetricCheck 

13. Post-build Actions 

14. Publish Cobertura Coverage Reports 

15. Cobertura xml report pattern: target/site/cobertura/coverage.xml 

16. Save 

17. Build Now 



18. Check the Coverage Reports in MetricCheck Job 

 

############################ Task 10.05 ############################# 

1. Create a Job "Package" 

2. Freestyle project->Ok 

3. Configure->Source Code Management->git 

4. Repository URL: https://github.com/edureka-git/DevOpsClassCodes.git 

5. Build->Add build step->Top level Maven targets 

6. Maven version : mymaven 

7. Goals:package 

8. Save 

9. Build Now 

10.//var file created under /var/lib/jenkins/workspace/Package/Target/ 

############################## Task 10.06 ############################# 

//Create pipe-line 

1. Go to Task 10.01 Compile Job. 

2. Configure. 

3. Post-build Actions->Add post-build actions. 

4. Build other projects. 

5. Project to Build: CodeReview. 

6. Save. 

7. Go to CodeReview project->configure. 

8. Build Triggers. 



9. check: Build after other projects are build. 

10.Project to watch : DevCompile. 

11.Post-build actions. 

12.Add post-build actions. 

13.Build other projects. 

14.projects to build:UnitTest 

15.Save. 

16.Go to UnitTest. 

17.Configure. 

18.Build Trigger-> Build after other projects are build. 

19. Project to Watch: CodeReview 

20. Post-Build Actions. 

21. Build Other Projects. 

22. MetricCheck. 

23. Save. 

24. Go to MetricCheck->Configure. 

25. Post-Build Actions. 

26. Projects to build: Package 

27. Build Triggers 

28. Build ofter other projects are build. 

29. Project to watch: MetricCheck. 

30. //No post-build. 

// Start first Job. 



// To install pipeline plugin 

//manage jenkins->manage plugins. 

//search build pipeline plugin 

//check build pipeline, install without restart. 

//after installation click new view at the top beside All, choose Build pipeline view.give the name 

dev_pipeline 

//select initial job: DevCompile 

Apache Maven 

Apache Maven is a software project management and comprehension tool. Based on the concept of 

a project object model (POM), Maven can manage a project's build, reporting and documentation from 

a central piece of information. 

Common Maven Commands 

Here is a list of common Maven commands plus a description of what they do. Please note, that even 

if a Maven command is shown on multiple lines in the table low, it is to be considered a single 

command line when typed into a windows command line or linux shell. 

 

 

Maven Command Description 

mvn --version Prints out the version of Maven you are running. 

mvn clean Clears the target directory into which Maven normally builds your 

project. 

mvn package Builds the project and packages the resulting JAR file into 

the target directory. 

mvn package -Dmaven.test.skip=true Builds the project and packages the resulting JAR file into 

the target directory - without running the unit tests during the build. 

mvn clean package Clears the target directory and Builds the project and packages the 

resulting JAR file into the target directory. 



mvn clean package -

Dmaven.test.skip=true 

Clears the target directory and builds the project and packages the 

resulting JAR file into the target directory - without running the unit tests 

during the build. 

mvn verify Runs all integration tests found in the project. 

mvn clean verify Cleans the target directory, and runs all integration tests found in the 

project. 

mvn install Builds the project described by your Maven POM file and installs the 

resulting artifact (JAR) into your local Maven repository 

mvn install -Dmaven.test.skip=true Builds the project described by your Maven POM file without running 

unit tests, and installs the resulting artifact (JAR) into your local Maven 

repository 

mvn clean install Clears the target directory and builds the project described by your 

Maven POM file and installs the resulting artifact (JAR) into your local 

Maven repository 

mvn clean install -

Dmaven.test.skip=true 

Clears the target directory and builds the project described by your 

Maven POM file without running unit tests, and installs the resulting 

artifact (JAR) into your local Maven repository 

mvn dependency:copy-dependencies Copies dependencies from remote Maven repositories to your local 

Maven repository. 

mvn clean dependency:copy-

dependencies 

Cleans project and copies dependencies from remote Maven repositories 

to your local Maven repository. 

mvn clean dependency:copy-

dependencies package 

Cleans project, copies dependencies from remote Maven repositories to 

your local Maven repository and packages your project. 

mvn dependency:tree Prints out the dependency tree for your project - based on the 

dependencies configured in the pom.xml file. 

mvn dependency:tree -Dverbose Prints out the dependency tree for your project - based on the 

dependencies configured in the pom.xml file. Includes repeated, 

transitive dependencies. 

mvn dependency:tree -

Dincludes=com.fasterxml.jackson.core 

Prints out the dependencies from your project which depend on the 

com.fasterxml.jackson.core artifact. 

mvn dependency:tree -Dverbose -

Dincludes=com.fasterxml.jackson.core 

Prints out the dependencies from your project which depend on the 

com.fasterxml.jackson.core artifact. Includes repeated, transitive 

dependencies. 

mvn dependency:build-classpath Prints out the classpath needed to run your project (application) based 

on the dependencies configured in the pom.xml file. 

 



Unit-03 

Continuous Testing, learn and Install Selenium, create test cases in Selenium, Integrate Selenium 

with Jenkins, Continuous Deployment, Install and configure puppet, understand master-slave 

architecture of puppet. 

 

 

 



Types of Testing 

 

 

Problems with manual testing 

 

 

 



Automated Testing 

 

Benefits of Automation Testing 

 

 

 

 



What is Selenium?                        

 

 

 

Selenium support the following: 

 



 

 

Components of Selenium Suite 

 

 

 

 

 



Selenium WebDriver 

 

 

 



 

 

 



 

 

 

Tools that can be integrated with Selenium 

 

 



 

 

Selenium WebDriver 

 

 

 

 

 

 

 



Working of Selenium WebDriver 

 

 

Types of Selenium WebDriver 

 

 

 

 

 



What is TestNG in Selenium?                                                                                  

TestNG is an open-source testing framework where NG stands for ‘Next Generation.’ It is 

architected to simplify a broad range of testing needs starting from unit testing to integrated 

system testing. Initially, both JUnit and TestNG were designed solely for unit testing. TestNG is 

inspired by JUnit Java platform and NUnit .NET platform, and some new functionalities were 

introduced in TestNG, making it more powerful and easy to use than the JUnit testing framework. 

Advantages of TestNG over Junit 

◦ TestNG Annotations are used to create test cases easily. 

◦ Test cases can be ‘grouped,’ ‘prioritized,’ and ‘executed’ more efficiently. 

◦ It supports parameterization. 

◦ It supports data-driven testing using Data Providers. 

◦ It can generate HTML test reports of the results representing: the number of test cases 

runs, the number of test cases failed, the number of test cases skipped 

◦ It effortlessly supports integration with various other tools and plugins like Eclipse IDE 

and built automation tools like Ant and Maven. 

◦ It supports parallel execution. 

◦ Logs can be generated. 

◦ In TestNG, there is no need to state @AfterClass and @BeforeClass in a project, which is 

present in JUnit. 

◦ You can specify any test method name in TestNG as method’s name constraint is not 

present in TestNG like it is in JUnit. 

 

 

 

 

 

 



Selenium 

1. Download and install eclipse IDE for java developer. 

2. Download selenium server standalone jar file and keep in a folder. 

 

 

 

 

3. Download chromedriver.exe and keep in the same folder.(before downloading driver check 

chrome version using chrome help->about google chrome) 



 

 

 

4. Open eclipse then file->new->java project (name the project as SeleniumDemo) ->Finish. 

5. Right click on SeleniumDemo->new->Package (name the package as seleniumScript) 

6. Right click on seleniumScript->new->class (name the class as WorkingWithChrome) 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



1. Create the following form in HTML using id or name attribute. 

 

 

2. Write a selenium code using java or python to fill all the details in the form and click the submit 

button. 

3. Download and install  “ChroPath” chrome extension using chrome web store. 

 

 
4. Open “gmail” login page then right click and inspect. 

 



 

5. Use the “chropath” tab in the following way: 

 

 
 

 



 
 

 
 

Example of using Xpath 

 

driver.findElement(By.xpath("//input[@id='usernamereg-firstName']")).sendKeys("Your-

Name"); 

 

6. Demonstrate the gmail login using xpath. 

 

 

 

 

 

 

 



 

Creation of TestNG test case in Selenium steps: 

 Open eclipse->help->eclipse marketplace->find (TestNG)->install. (if already installed TestNG in 

eclipse ignore this step) 

 Create a folder “TestNG_demo”. 

 Create a xml file with the following contents, and keep in the Test_NG folder. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<suite name="Demo suite 1" verbose="1" > 

  <test name="Demo test 1" > 

    <classes> 

      <class name="com.techbeamers.TestA"/> 

      <class name="com.techbeamers.TestB"/> 

      <class name="com.techbeamers.TestC"/> 

    </classes> 

 </test> 

</suite> 

 



 

 Create a new java project in eclipse(“TestNG_Demo”) 

 Add the TestNG library to your java project(right click on project “TestNG_Demo”->Build Path-

>Add Libraries) 



 
 

 Choose TestNG and Finish. 

 Right Click on the Package  ”TestNG_Demo” ->New-> others. 

 

  
 



 
 Add the selenium jar file in your package->right click on the project->build path->configuration-

>libraries ->add external jar. 

 Keep the chromedriver.exe in the same folder “TestNG_Demo” and provide the path. 

 Provide the xml file to the project->right click on the project “testNG_Demo”->import->xml->xml 

catalog->import the xml file where you have stored (TestNG_Demo folder) 

 Code 

package com.techbeamers.com; 

import org.openqa.selenium.By; 

import org.openqa.selenium.WebDriver; 

import org.openqa.selenium.WebElement; 

import org.openqa.selenium.chrome.ChromeDriver; 

import org.testng.annotations.AfterMethod; 

import org.testng.annotations.BeforeMethod; 

import org.testng.annotations.Test; 

 

public class SeleniumWebDriverTest { 

  

 WebDriver driver = new ChromeDriver(); 

  

  @Test 

  public void MyFirstTestNGTestCase() throws InterruptedException { 

  String title = driver.getTitle(); 

  System.out.print("Current page title is : " + title); 



 

  WebElement user = driver.findElement(By.name("userName")); 

  user.sendKeys("test"); 

  WebElement pwd = driver.findElement(By.name("password")); 

  pwd.sendKeys("test"); 

  WebElement signin = driver.findElement(By.name("login")); 

  signin.click(); 

 

  Thread.sleep(1000); 

 

  System.out.print("\n'SUCCESSFUL EXECUTION!!!"); 

 } 

 public void invokeBrowser() { 

 

 System.setProperty("webdriver.chrome.driver","C:\\Users\\De

ll\\Desktop\\JAVACODE\\chromedriver.exe"); 

  driver.manage().window().maximize(); 

  driver.get("http://newtours.demoaut.com/"); 

 } 

 public void cleaupProc() { 

  System.out.print("\nBrowser close"); 

  driver.quit(); 

} 

 

public void f() { 

} 

@BeforeMethod 

public void beforeMethod() { 

} 

 

@AfterMethod 

public void afterMethod() { 

} 

 

} 

 

 Run the TestNG test case 

 Right click on the project->run as->testNG test 

 Find the defauttest.html file in your TestDemo folder 

C:\Users\Dell\Desktop\TestNG_Demo\TestNG_Demo\test-output\Default suite 

 Run on browser 

 



 

 

 

 

What does Selenium software do? 

Below are a few of the most intriguing uses of Selenium software: 

1. Automated Testing: Automated Testing comes in handy in larger projects where 
if not for Selenium, the tester would have to manually test each and every created 
functionality. With Selenium, all of the manual tasks are automated, thereby 
reducing the burden and stress on the testers. 

2. Cross Browsers Compatibility: Selenium supports a wide range of browsers 
such as Chrome, Mozilla Firefox, Internet Explorer, Safari, and Opera. 

3. Increases Test Coverage: With the automation of tests, the overall testing time 
gets reduced which results in freeing up time for the tester to perform more testing 
on different test scenarios in the same time. 

4. Reduces Test Execution Time: Since Selenium supports parallel test execution, 
it greatly helps in reducing parallel test execution time. 

5. Multiple OS Support: Selenium WebDriver provides support across multiple 
Operating Systems like Windows, Linux, UNIX, Mac, etc. With 
Selenium WebDriver you can create a test case on Windows OS and execute it on 
Mac OS. 

 

 



What Are Browser Elements? 

Elements are the different components that are present on web pages. The most common 
elements we notice while browsing are: 

 Text boxes 
 CTA Buttons 
 Images 
 Hyperlinks 
 Radio buttons/ Checkboxes 
 Text area/ Error messages 
 Drop down box/ List box/ Combo box 
 Web Table/ HTML Table 
 Frame 

Locating Browser Elements Present On The Web Page 

Every element on a web page will have attributes (properties). Elements can have more 
than one attribute and most of these attributes will be unique for different elements. For 
example, consider a page having two elements: an image and a text box. Both these 
elements have a ‘Name’ attribute and an ‘ID’ attribute. These attribute values need to be 
unique for each element. In other words, two elements cannot have the same attribute 
value.  

Since the elements are located using these attributes, we refer to them as ‘Locators’. 
The locators are: 

 By.id 
Syntax: driver.findElement(By.id(“xyz”)); 

 By.name 
Syntax: driver.findElement(By.name(“xyz”)); 

 By.className 
Syntax: driver.findElement(By.className(“xyz”)); 

 By.tagName 
Syntax: driver.findElement(By.tagName(“xyz”)); 

 By.linkText 
Syntax: driver.findElement(By.linkText(“xyz”)); 

 By.partialLinkText 
Syntax: driver.findElement(By.partialLinkText(“xyz”)); 

 By.css 
Syntax: driver.findElement(By.css(“xyz”)); 

 By.xpath 
Syntax: driver.findElement(By.xpath(“xyz”)); 

 



What are the main differences between Automation Testing & Manual Testing? 

 

Can automation testing replace manual testing? 

Automation testing isn’t a replacement for manual testing. No matter how good automated tests 

are, you cannot automate everything. Manual tests play an important role in software 

development and come in handy whenever you have a case where you cannot use automation. 

Automated and manual testing each has its own strengths and weaknesses. Manual testing helps 

us understand the entire problem and more flexibly explore other angles of tests. On the other 

hand, automated testing helps save time in the long run by accomplishing a large number of 

surface-level tests in a short time. 

What are the advantages of using an Automation Framework? 

The advantages of using a test automation framework are: 

 Re-usability of code 
 Reliable recovery scenarios 
 Maximum test coverage 
 Low maintenance cost 
 High Return of Investment(ROI) in the long run 
 Minimal manual intervention 
 Easy reporting capabilities 

 

 

 

 



What are the advantages of TestNG over JUnit? 

In TestNG, testing is based on Junit, but it is designed to overcome the limitations of 
JUnit. Some advantages of TestNG over Junit are: 

 Annotations are easier to understand in TestNG 
 In TestNG, test cases can be grouped easily 
 TestNG supports parallel testing, unlike in JUnit 

 

 

 

 

What is Puppet? 

o Puppet is a DevOps configuration management tool. This is developed by 

Puppet Labs and is available for both open-source and enterprise versions. It is 

used to centralize and automate the procedure of configuration management. 

o This tool is developed using Ruby DSL (domain-specific language), which allows 

you to change a complete infrastructure in code format and can be easily managed 

and configured. 

o Puppet tool deploys, configures, and manages the servers. This is used particularly 

for the automation of hybrid infrastructure delivery and management. 

o With the help of automation, Puppet enables system administrators to operate 

easier and faster. 

o Puppet can also be used as a deployment tool as it can deploy software on the 

system automatically. Puppet implements infrastructure as a code, which means 

that you can test the environment for accurate deployment. 

o uppet supports many platforms such as Microsoft Windows, Debian/Ubuntu, Red 

Hat/CentOS/Fedora, MacOS X, etc. 



o Puppet uses the client-server paradigm, where one system in any cluster works as 

the server, called the puppet master, and other works as a client on nodes called a 

slave. 

What Is Static Code Analysis? 

Static code analysis refers to the operation performed by a static analysis tool, which is 

the analysis of a set of code against a set (or multiple sets) of coding rules. 

 

Static code analysis and static analysis are often used interchangeably, along with source 

code analysis.  

 

Static code analysis addresses weaknesses in source code that might lead to 

vulnerabilities. Of course, this may also be achieved through manual source code reviews. 

But using automated tools is much more effective. 

 

Static analysis is commonly used to comply with coding guidelines — such as  MISRA. 

And it’s often used for complying with industry standards — such as  ISO 26262. 

 

Docker 

 

 

 



 

 

 



 

 



 

 



 

 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 

 

Command Description 

curl localhost Pings the application. 

docker build Builds an image from a Dockerfile. 

docker build . -t Builds the image and tags the image id. 

docker CLI Start the Docker command line interface. 

docker container rm Removes a container. 

docker images Lists the images. 



docker ps Lists the containers. 

docker ps -a Lists the containers that ran and exited successfully. 

docker pull Pulls the latest image or repository from a registry. 

docker push Pushes an image or a repository to a registry. 

docker run Runs a command in a new container. 

docker run -p Runs the container by publishing the ports. 

docker stop Stops one or more running containers. 

docker stop $(docker ps -q) Stops all running containers. 

docker tag Creates a tag for a target image that refers to a source 

image. 

docker –version Displays the version of the Docker CLI. 

exit Closes the terminal session. 

export MY_NAMESPACE Exports a namespace as an environment variable. 

git clone Clones the git repository that contains the artifacts 

needed. 

ibmcloud cr images Lists images in the IBM Cloud Container Registry. 

ibmcloud cr login Logs your local Docker daemon into IBM Cloud 

Container Registry. 

ibmcloud cr namespaces Views the namespaces you have access to. 

ibmcloud cr region-set Ensures that you are targeting the region appropriate to 

your cloud account. 

ibmcloud target Provides information about the account you’re targeting. 

ibmcloud version Displays the version of the IBM Cloud CLI. 

ls Lists the contents of this directory to see the artifacts. 

 

 

 

 

 

 

Term Definition 

Agile 

is an iterative approach to project management and software 

development that helps teams deliver value to their customers 

faster and with fewer issues. 

Client-server architecture 

is a distributed application structure that partitions tasks or 

workloads between the providers of a resource or service, called 

servers, and service requesters, called clients. 



A container 

powered by the containerization engine, is a standard unit of 

software that encapsulates the application code, runtime, system 

tools, system libraries, and settings necessary for programmers to 

efficiently build, ship and run applications. 

Container Registry Used for the storage and distribution of named container images. 

While many features can be built on top of a registry, its most 

basic functions are to store images and retrieve them. 

CI/CD pipelines A continuous integration and continuous deployment (CI/CD) 

pipeline is a series of steps that must be performed in order to 

deliver a new version of software. CI/CD pipelines are a practice 

focused on improving software delivery throughout the software 

development life cycle via automation. 

Cloud native A cloud-native application is a program that is designed for a 

cloud computing architecture. These applications are run and 

hosted in the cloud and are designed to capitalize on the inherent 

characteristics of a cloud computing software delivery model. 

Daemon-less A container runtime that does not run any specific program 

(daemon) to create objects, such as images, containers, networks, 

and volumes. 

DevOps is a set of practices, tools, and a cultural philosophy that automate 

and integrate the processes between software development and IT 

teams. 

Docker An open container platform for developing, shipping and running 

applications in containers. 

A Dockerfile is a text document that contains all the commands you would 

normally execute manually in order to build a Docker image. 

Docker can build images automatically by reading the instructions 

from a Dockerfile. 

Docker client is the primary way that many Docker users interact with Docker. 

When you use commands such as docker run, the client sends 

these commands to dockerd, which carries them out. The docker 

command uses the Docker API. The Docker client can 

communicate with more than one daemon. 

Docker Command Line 

Interface (CLI) 

The Docker client provides a command line interface (CLI) that 

allows you to issue build, run, and stop application commands to a 

Docker daemon. 

Docker daemon (dockerd) creates and manages Docker objects, such as images, containers, 

networks, and volumes. 

Docker Hub is the world's easiest way to create, manage, and deliver your 

team's container applications. 

Docker localhost Docker provides a host network which lets containers share your 

host’s networking stack. This approach means that a localhost in a 

container resolves to the physical host, instead of the container 

itself. 



Docker remote host A remote Docker host is a machine, inside or outside our local 

network which is running a Docker Engine and has ports exposed 

for querying the Engine API. 

Docker networks help isolate container communications. 

Docker plugins such as a storage plugin, provides the ability to connect external 

storage platforms. 

Docker storage uses volumes and bind mounts to persist data even after a running 

container is stopped. 

LXC LinuX Containers is a OS-level virtualization technology that 

allows creation and running of multiple isolated Linux virtual 

environments (VE) on a single control host. 

IBM Cloud Container 

Registry 

stores and distributes container images in a fully managed private 

registry. 

Image An immutable file that contains the source code, libraries, and 

dependencies that are necessary for an application to run. Images 

are templates or blueprints for a container. 

Immutability Images are read-only; if you change an image, you create a new 

image. 

Microservices are a cloud-native architectural approach in which a single 

application contains many loosely coupled and independently 

deployable smaller components or services. 

Namespace A Linux namespace is a Linux kernel feature that isolates and 

virtualizes system resources. Processes which are restricted to a 

namespace can only interact with resources or processes that are 

part of the same namespace. Namespaces are an important part of 

Docker’s isolation model. Namespaces exist for each type of 

resource, including networking, storage, processes, hostname 

control and others. 

Operating System 

Virtualization 

OS-level virtualization is an operating system paradigm in which 

the kernel allows the existence of multiple isolated user space 

instances, called containers, zones, virtual private servers, 

partitions, virtual environments, virtual kernels, or jails. 

Private Registry Restricts access to images so that only authorized users can view 

and use them. 

REST API A REST API (also known as RESTful API) is an application 

programming interface (API or web API) that conforms to the 

constraints of REST architectural style and allows for interaction 

with RESTful web services. 

Registry is a hosted service containing repositories of images which 

responds to the Registry API. 

Repository is a set of Docker images. A repository can be shared by pushing it 

to a registry server. The different images in the repository can be 

labelled using tags. 



Server Virtualization Server virtualization is the process of dividing a physical server 

into multiple unique and isolated virtual servers by means of a 

software application. Each virtual server can run its own operating 

systems independently. 

Serverless is a cloud-native development model that allows developers to 

build and run applications without having to manage servers. 

Tag A tag is a label applied to a Docker image in a repository. Tags are 

how various images in a repository are distinguished from each 

other. 

 

 

 

 Download and install Docker on your system. 

 

 

Create an Login in your DockerHub account 

 

Open PWD platform on your browser (link :   https://labs.play-with-docker.com/) 

 

Click on Add New Instance on the left side of the screen to bring up Alpine OS instance on the 

right side 



 

     Task #1 

 

  

Creating Docker File  

 

Command:  vim Dockerfile 

 Write the following content into the docker file 

  FROM alpine:3.5 

  RUN apk update 

  RUN apk add git 

 then Esc : wq  

 

Build Docker Image 

 docker build https://github.com/alpine-docker/git 

 

Tagging image as myimage_1 

 docker tag https://github.com/alpine-docker/git myimage_1 

 

Verify the Images 

 docker images 

 

Create a container 

 docker run -itd alpine 

  

 docker ps 

 



Pushing it to DockerHub 

 

 docker login 

 # enter your username and password 

 docker push  <image name>  

 

Create Ubuntu Container 

  

 docker pull ubantu 

 docker run -dit ubuntu 

 

Accessing the container shell 

   

 docker exec -ti  <container-id> bash 

 ###for container id use docker ps command   

 

Display the docker host information 

  

 docker info 

 

Stop the container 

  

 docker stop <container name> 

 

 

 

Task #2 



 

Running Single Node WordPress Example 

  

 

 git clone https://github.com/collabnix/dockerlabs 

 cd dockerlabs/intermediate/workshop/DockerCompose/ 

 cd wordpress 

 

Bringup the containers 

 docker-compose up -d 

 

Checking container status 

 docker-compose ps 

 

Listout the services 

 docker-compose ps --services 

 

Stop the container of a single service 

 docker-compose stop webserver 

 

Checking container status 

 docker-compose ps 

 

docker-compose start webserver 

 docker-compose start webserver 

 

#################### 



What is the difference between Docker and Docker Compose? 

 

The key difference between docker run versus docker-compose is that docker run is entirely 

command line based, while docker-compose reads configuration data from a YAML file. 

 

####################### 

Create an Login in your DockerHub account 

 

Open PWD platform on your browser (link :   https://labs.play-with-docker.com/) 

 

Click on Add New Instance on the left side of the screen to bring up Alpine OS instance on the right side 

 

     Task #1 

 

  

Creating Docker File  

 

Command:  vim Dockerfile 

 Write the following content into the docker file 

  FROM alpine:3.5 

  RUN apk update 

  RUN apk add git 

 then Esc : wq  

 

Build Docker Image 

 docker build https://github.com/alpine-docker/git 

 

Tagging image as myimage_1 

 docker tag https://github.com/alpine-docker/git myimage_1 



 

Verify the Images 

 docker images 

 

Create a container 

 docker run -itd alpine 

  

 docker ps 

 

Pushing it to DockerHub 

 

 docker login 

 # enter your username and password 

 # tag your image with your id as 

 docker tag alpine  <docker id>/myimage_1  

docker push  <image name>  

 

Create Ubuntu Container 

  

 docker pull ubantu 

 docker run -dit ubuntu 

 

Accessing the container shell 

   

 docker exec -ti  <container-id> bash 

 ###for container id use docker ps command   

 

Display the docker host information 

  



 docker info 

 

Stop the container 

  

 docker stop <container name> 

 

 

 

Task #2 

 

Running Single Node WordPress Example 

  

 git clone https://github.com/collabnix/dockerlabs 

 cd dockerlabs/intermediate/workshop/DockerCompose/ 

 cd wordpress 

 

Bringup the containers 

 docker-compose up -d 

 

Checking container status 

 docker-compose ps 

 

Listout the services 

 docker-compose ps --services 

 

Stop the container of a single service 

 docker-compose stop webserver 

 

Checking container status 



 docker-compose ps 

 

docker-compose start webserver 

 docker-compose start webserver 

 

 

 

 

#################### 

What is the difference between Docker and Docker Compose? 

The key difference between docker run versus docker-compose is that docker run is entirely command 

line based, while docker-compose reads configuration data from a YAML file. 

####################### 

Docker Swarm 

Swarm is the platform for managing "Dockerized" containers and is a native mode of Docker. A Swarm 

cluster (set of computers that operate as a single system) consists of: Docker Engine-deployed Swarm 

manager nodes that manage the cluster. 

####################### 

Task # 03 

Open PWD platform in your browser 

 

 



 

 

 

 

 

Clone the Repository 

git clone https://github.com/dockersamples/docker-swarm-visualizer 

 cd docker-swarm-visualizer 

docker-compose up -d 

 

To run in a docker swarm: 

docker service create \ 

  --name=viz \ 

  --publish=8080:8080/tcp \ 

  --constraint=node.role==manager \ 

  --mount=type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock \ 

  dockersamples/visualizer 

 

     docker run -it -d -p 8080:8080 -v /var/run/docker.sock:/var/run/docker.sock dockersamples/visualizer 

 



##### If port 8080 is already in use on your host, you can specify e.g. -p [YOURPORT]:8080 

 

 

 

Task # 4 

Docker Network  

 

Display all the existent networks in the host: 

  

  docker network ls 

##The docker network command is the main command for configuring and managing container networks. 

 

##docker network inspect to view configuration details of the container networks on your Docker host. 

  docker network inspect bridge 

 

##Run a docker info command on any of your Docker hosts and locate the list of network plugins. 

  docker info 

 

## List the bridges on your Docker host 

 

  brctl show 

##The output above shows a single Linux bridge called docker0. This is the bridge that was automatically 

created for the bridge network. 

##use the ip command to view details of the docker0 bridge. 

 

Connect a container 

##The bridge network is the default network for new containers. This means that unless you specify a 

different network, all new containers will be connected to the bridge network. 

 

Create a new container. 



 

  docker run -dt ubuntu sleep infinity 

##This command will create a new container based on the ubuntu:latest image and will run the sleep 

command to keep the container running in the background. As no network was specified on the docker 

run command, the container will be added to the bridge network. 

 

  brctl show 

##docker0 bridge now has an interface connected. This interface connects the docker0 bridge to the new 

container just created. 

##Inspect the bridge network  

  docker network inspect bridge 

 

Test network connectivity 

The output to the previous docker network inspect command shows the IP address of the new container. 

In the previous example it is “172.17.0.2” but yours might be different. 

##Ping the IP address of the container from the shell prompt of your Docker host. 

  ping 172.17.0.2 

##Press Ctrl-C to stop the ping. 

  docker ps 

# Exec into the container 

  docker exec -it <container id> /bin/bash 

# Update APT package lists and install the iputils-ping package 

  apt-get update 

 

Start a new container based off the official NGINX image. 

NGINX is open source software for web serving, reverse proxying, caching, load balancing, media 

streaming, and more. It started out as a web server designed for maximum performance and stability. In 

addition to its HTTP server capabilities, NGINX can also function as a proxy server for email (IMAP, POP3, 

and SMTP) and a reverse proxy and load balancer for HTTP, TCP, and UDP servers. 

  docker run --name web1 -d -p 8080:80 nginx 

##Check that the container is running and view the port mapping. 



  curl <ip>:8080   

 

 

 

Kubernetes 

Kubernetes, also known as K8s, is an open-source system for automating deployment, 

scaling, and management of containerized applications. 

It groups containers that make up an application into logical units for easy management 

and discovery. Kubernetes builds upon 15 years of experience of running production 

workloads at Google, combined with best-of-breed ideas and practices from the 

community. 

 

 

Differences Between Docker Swarm and Kubernetes 

Kubernetes and Docker Swarm are both effective solutions for: 

 Massive scale application deployment 

 Implementation 

 Management 

The Core Differences 

The main difference is that Kubernetes is a container orchestration system that manages 

multiple containers. Docker Swarm does not manage any containers but instead is a 

cluster manager for Docker containers. Kubernetes also has built-in support for stateful 

applications, whereas Docker Swarm does not. 

 Kubernetes is designed to work with any programming language and framework, 

while Docker Swarm only works with the Docker Engine API. 



 Kubernetes runs on top of Linux Containers while Swarm runs inside Docker 

Containers. 

 Kubernetes uses a master-slave architecture where one master instance controls 

multiple worker instances; Kubernetes uses an active/passive model where each 

worker instance is controlled by its own master instance. 

 

KubernetesArchitecture 

 

A Kubernetes cluster is a form of Kubernetes deployment architecture. Basic Kubernetes 

architecture exists in two parts: the control plane and the nodes or compute machines. 

Each node could be either a physical or virtual machine and is its own Linux environment. 

Every node also runs pods, which are composed of containers. 

 

Kubernetes architecture components or K8s components include the Kubernetes control 

plane and the nodes in the cluster. The control plane machine components include the 

Kubernetes API server, Kubernetes scheduler, Kubernetes controller manager, and etcd. 



Kubernetes node components include a container runtime engine or docker, a Kubelet 

service, and a Kubernetes proxy service. 

 

 

minikube start 

minikube is local Kubernetes, focusing on making it easy to learn and develop for 

Kubernetes. 

Installation 

To install the latest minikube stable release on x86-64 Windows using Windows Package 

Manager: 

If the Windows Package Manager is installed, use the following command to install 

minikube: 

 

   winget install minikube 

OR 

If the Chocolatey Package Manager is installed, use the following command: 

choco install minikube 

 

 

Start your cluster 

From a command prompt with administrator access; run 

   minikube start 



 

 

Interact with your cluster 

If you already have kubectl installed, you can now use it to access your shiny new cluster: 

   kubectl get po -A 

OR 

   minikube kubectl -- get po -A 

 

 

minikube bundles the Kubernetes Dashboard, allowing you to get easily acclimated to 

your new environment: 

minikube dashboard 

 



 

 

 

Ctrl+c for exit 

 

Deploy applications 

minikube kubectl -- create deployment hello-minikube --image=kicbase/echo-server:1.0 

 

minikube kubectl -- expose deployment hello-minikube --type=NodePort --port=8080 

 

minikube kubectl -- get services hello-minikube 



 

 

minikube service hello-minikube 

 

 

 

 

minikube kubectl -- port-forward service/hello-minikube 7080:8080 

 

Your application is now available at http://localhost:7080/ 

Ctrl+c for exit 

 

 

http://localhost:7080/


Manage your cluster 

Pause Kubernetes without impacting deployed applications: 

minikube pause 

Unpause a paused instance: 

  minikube unpause 

Halt the cluster: 

  minikube stop 

Delete all of the minikube clusters: 

  minikube delete --all 

 

 

 

 

What are hypervisors? 

Virtualization requires the use of a hypervisor, which was originally called a virtual machine 

monitor or VMM. A hypervisor abstracts operating systems and applications from their 

underlying hardware. The physical hardware that a hypervisor runs on is typically referred to as 

a host machine, whereas the VMs the hypervisor creates and supports are collectively called 

guest machines. 

Type 1 hypervisors 

A Type 1 hypervisor runs directly on the host machine's physical hardware, and it's referred to as 

a bare-metal hypervisor. The Type 1 hypervisor doesn't have to load an underlying OS. With direct 

access to the underlying hardware and no other software -- such as OSes and device drivers -- to 

contend with for virtualization, Type 1 hypervisors are regarded as the most efficient and best-

performing hypervisors available for enterprise computing. 

Type 2 hypervisors 

A Type 2 hypervisor is typically installed on top of an existing OS. It is sometimes called a hosted 

hypervisor because it relies on the host machine's preexisting OS to manage calls to CPU, 

memory, storage and network resources. 

 



Type 2 hypervisors trace their roots back to the early days of x86 virtualization when the 

hypervisor was added above the existing systems' OSes. Although the purpose and goals of Type 

1 and Type 2 hypervisors are identical, the presence of an underlying OS with Type 2 hypervisors 

introduces unavoidable latency; all of the hypervisor's activities and the work of every VM has to 

pass through the host OS. Also, any security flaws or vulnerabilities in the host OS could 

potentially compromise all of the VMs running above it. 

 

 

VMs have the host OS and guest OS inside each VM. A guest OS can be any OS, like Linux or 

Windows, irrespective of the host OS. In contrast, Docker containers host on a single physical 

server with a host OS, which shares among them. Sharing the host OS between containers makes 

them light and increases the boot time. Docker containers are considered suitable to run multiple 

applications over a single OS kernel; whereas, virtual machines are needed if the applications or 

services required to run on different OS.  

 

Kubernetes vs. Docker Swarm – A comparison 
The major difference between the platforms is based on complexity. Kubernetes is well suited 

for complex applications. On the other hand, Docker Swarm is designed for ease of use, making 

it a preferable choice for simple applications. 



 Kubernetes: Depending on the operating system, manual installation can differ for each 

OS. If you are using services from a cloud provider, installation is not required. 

 Docker Swarm: Docker instances are typically consistent across operating systems and 

thus fairly simple to set up. 

 Kubernetes: Services are made discoverable through a single DNS name. Kubernetes 

accesses container applications through an IP address or HTTP route. 

 Swarm: Comes with internal load balancers. 

 Kubernetes: Kubernetes has built-in monitoring along with third-party monitoring tools 

integration support. 

 Docker Swarm: In contrast, there are no in-built monitoring mechanisms in Docker 

Swarm. However, Docker Swarm supports monitoring through third-party applications. 

 

Continuous Delivery vs. Deployment – What's the 

Difference? 
Continuous delivery automates deployment of a release to an environment for staging or 

testing. Continuous deployment automatically deploys every release through your pipeline 

(including testing) and to production. 

What Continuous Delivery Does 

 Continuous delivery automatically deploys releases to a testing or staging environment. 

 Continuous delivery does require human intervention to deploy a release from staging 

to production. 

 Continuous delivery does not automatically deploy code changes to production. 

What Continuous Deployment Does 

 Continuous deployment automatically deploys releases from building through testing 

and into production. 

 Continuous deployment doesn't require human intervention. 

 Continuous deployment doesn't ensure your testing culture and protocol is up to snuff. 

It simply looks for a checked box and, if it finds the box is checked, deploys the release to 

production and beyond. 

 

 

 

Microservices 



A microservices architecture is a cloud-native approach to building software in a way that allows 

for each core function within an application to exist independently. 

Monolithic architecture vs microservices architecture 

The traditional approach to building applications has focused on the monolith. In a monolithic 

architecture, all the functions and services within an application are locked together, operating 

as a single unit. When the application is added to or improved upon in any way, the architecture 

grows more complex. This makes it more difficult to optimize any singular function within the 

application without taking the entire application apart. This also means that if one process within 

the application needs to be scaled, the entire application must be scaled as well. 

In microservices architectures, applications are built so that each core function within the app 

runs independently. This allows development teams to build and update new components to 

meet changing business needs without disrupting the application as a whole. 

 

Automation vs Orchestration: The Main Difference 

Automation refers to automating a single process or a small number of related tasks (e.g., 

deploying an app). Orchestration refers to managing multiple automated tasks to create a 

dynamic workflow (e.g., deploying an app, connecting it to a network, and integrating it with 

other systems). 

 

Whereas automation is a simple "if this, then that" process, orchestration has many moving parts 

and requires advanced logic that can: 

 

Make decisions based on an output from an automated task. 

Branch out into different steps and actions. 

Adapt to changing circumstances and conditions. 

Coordinate multiple tasks at the same time. 

The line between the two concepts can be blurry. For example, you can have a process with 100 

steps and automate all of them, and you would still rely on automation. You only start 

orchestrating when you introduce some coordination and decision-making to the process. 

 

Technically, automation is a subset of orchestration as you cannot orchestrate manual, non-

automated tasks. 



 

Automation and orchestration do not aim to replace people fully. As a company becomes more 

reliant on automated tasks, human involvement becomes less frequent but more valuable. The 

IT staff gets to focus on problem-solving and innovation rather than mundane, day-to-day tasks.              

 

Differences Between Virtualization and Containerization 

1. Isolation 

Virtualization results in a fully isolated OS and VM instance, while containerization isolates the 

host operating system machine and containers from one another. However, all containers are at 

risk if an attacker controls the host. 

2.Different Operating Systems 

Virtualization can host more than one complete operating system, each with its own kernel, 

whereas containerization runs all containers via user mode on one OS. 

3.Guest Support 

Virtualization allows for a range of operating systems to be used on the same server or machine. 

On the other hand, containerization is reliant on the host OS, meaning Linux containers cannot 

be run on Windows and vice-versa. 

4. Deployment 

Virtualization means each virtual machine has its own hypervisor. With containerization, either 

Docker is used to deploy an individual container, or Kubernetes is used to orchestrate multiple 

containers across multiple systems. 

5. Persistent Virtual Storage 

Virtualization assigns a virtual hard disk (VHD) to each individual virtual machine, or a server 

message block (SMB) if shared storage is used across multiple servers. With containerization, the 

local hard disk is used for storage per node, with SMB for shared storage across multiple nodes. 

6.Virtual Load Balancing 

Virtualization means failover clusters are used to run VMs with load balancing support. Since 

containerization uses orchestration via Docker or Kubernetes to start and stop containers, it 

maximizes resource utilization. However, decommissioning for load balancing with 

containerization occurs when limits on available resources are reached. 

7.Virtualized Networking 



Virtualization uses virtual network adaptors (VNA) to facilitate networking, running through a 

master network interface card (NIC). With containerization, the VNA is split into multiple isolated 

views for lightweight network virtualization. 

 

What are the requirements to become a DevOps Engineer? 

 

When looking to fill out DevOps roles, organizations look for a clear set of skills. The most 

important of these are: 

 

Experience with infrastructure automation tools like Chef, Puppet, Ansible, SaltStack or Windows 

PowerShell DSC. 

Fluency in web languages like Ruby, Python, PHP or Java. 

Interpersonal skills that help you communicate and collaborate across teams and roles. 

 

Mention some of the core benefits of DevOps? 

Faster development of software and quick deliveries. 

DevOps methodology is flexible and adaptable to changes easily. 

Compared to the previous software development models, confusion about the project is 

decreased due to increased product quality. 

The gap between the development team and operation team is bridged. i.e, the communication 

between the teams has been increased. 

Efficiency is increased by the addition of automation of continuous integration and continuous 

deployment. 

Customer satisfaction is enhanced. 

 

What is the difference between Git Merge and Git Rebase? 

Here, both are merging mechanisms but the difference between the Git Merge and Git Rebase 

is, in Git Merge logs will be showing the complete history of commits. 

 



However, when one does Git Rebase, the logs are rearranged. The rearrangement is done to 

make the logs look linear and simple to understand. This is also a drawback since other team 

members will not understand how the different commits were merged into one another. 

 

What are the benefits of Automation Testing? 

Supports execution of repeated test cases 

Aids in testing a large test matrix 

Enables parallel execution 

Encourages unattended execution 

Improves accuracy thereby reducing human generated errors 

Saves time and money 

 

What is Docker image? 

Docker image is the source of Docker container. In other words, Docker images are used to create 

containers. Images are created with the build command, and they’ll produce a container when 

started with run. Images are stored in a Docker registry such as registry.hub.docker.com because 

they can become quite large, images are designed to be composed of layers of other images, 

allowing a minimal amount of data to be sent when transferring images over the network. 

 

 

 

References 

DevOps Ecosystem (winsurtech.com) 

Top 120+ DevOps Interview Questions and Answers For 2023 | Edureka 

Git (git-scm.com) 

What is continuous integration? | IBM 

Jenkins 

What is Jenkins? The CI server explained | InfoWorld 

What Is Static Analysis? Static Code Analysis Overview | Perforce 

Top 50 Cobertura interview questions and answers - DevOpsSchool.com 

https://winsurtech.com/blog/devops-ecosystem/
https://www.edureka.co/blog/interview-questions/top-devops-interview-questions/
https://git-scm.com/
https://www.ibm.com/in-en/topics/continuous-integration
https://www.jenkins.io/
https://www.infoworld.com/article/3239666/what-is-jenkins-the-ci-server-explained.html
https://www.perforce.com/blog/sca/what-static-analysis
https://www.devopsschool.com/blog/top-50-cobertura-interview-questions-and-answers/


Top Test Automation Interview Questions and Answers in 2023 | Edureka 

Puppet Tutorial - javatpoint 

 

 

 

 

 

 

 

https://www.edureka.co/blog/interview-questions/test-automation-interview-questions/
https://www.javatpoint.com/puppet

